Maximum Covariance Unfolding : Manifold Learning for Bimodal Data

نویسندگان

  • Vijay Mahadevan
  • Chi Wah Wong
  • Jose Costa Pereira
  • Tom Liu
  • Nuno Vasconcelos
  • Lawrence K. Saul
چکیده

We propose maximum covariance unfolding (MCU), a manifold learning algorithm for simultaneous dimensionality reduction of data from different input modalities. Given high dimensional inputs from two different but naturally aligned sources, MCU computes a common low dimensional embedding that maximizes the cross-modal (inter-source) correlations while preserving the local (intra-source) distances. In this paper, we explore two applications of MCU. First we use MCU to analyze EEG-fMRI data, where an important goal is to visualize the fMRI voxels that are most strongly correlated with changes in EEG traces. To perform this visualization, we augment MCU with an additional step for metric learning in the high dimensional voxel space. Second, we use MCU to perform cross-modal retrieval of matched image and text samples from Wikipedia. To manage large applications of MCU, we develop a fast implementation based on ideas from spectral graph theory. These ideas transform the original problem for MCU, one of semidefinite programming, into a simpler problem in semidefinite quadratic linear programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Variance Correction with Application to A* Search

In this paper we introduce Maximum Variance Correction (MVC), which finds largescale feasible solutions to Maximum Variance Unfolding (MVU) by post-processing embeddings from any manifold learning algorithm. It increases the scale of MVU embeddings by several orders of magnitude and is naturally parallel. This unprecedented scalability opens up new avenues of applications for manifold learning,...

متن کامل

Isometric Correction for Manifold Learning

In this paper, we present a method for isometric correction of manifold learning techniques. We first present an isometric nonlinear dimension reduction method. Our proposed method overcomes the issues associated with well-known isometric embedding techniques such as ISOMAP and maximum variance unfolding (MVU), i.e., computational complexity and the geodesic convexity requirement. Based on the ...

متن کامل

EFL Teacher Questions to Scaffold Learning Process: A Conversation Analytic Study

Questioning practice constitutes one of the typical and fundamental interactional tools in L2 teaching. Much L2 research on teacher questions has been quantitative studies focusing on identifying question types and their roles in language acquisition and meaning negotiation. However, by drawing on conversation analysis within a sociocultural perspective, this study examines qualitatively how EF...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Robust manifold learning with CycleCut

Many manifold learning algorithms utilize graphs of local neighborhoods to estimate manifold topology. When neighborhood connections short-circuit between geodesically distant regions of the manifold, poor results are obtained due to the compromises that the manifold learner must make to satisfy the erroneous criteria. Also, existing manifold learning algorithms have difficulty unfolding manifo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011